Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Front Immunol ; 15: 1329846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529279

RESUMO

Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Nucleocapsídeo/química , Peptídeos/química , SARS-CoV-2/química , Antígenos de Histocompatibilidade Classe II/química , Glicoproteína da Espícula de Coronavírus/química
2.
Anal Chim Acta ; 1280: 341857, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858551

RESUMO

A thin-layer flow cell of low internal volume (12 µL) is incorporated in a flow injection analysis (FIA) system for simultaneous and real-time photoelectrochemical (PEC) immunoassay of anti-SARS-CoV-2 spike 1 (S1) and anti-SARS-CoV-2 nucleocapsid (N) antibodies. Covalent linkage of S1 and N proteins to two separate polyethylene glycol (PEG)-covered gold nanoparticles (AuNPs)/TiO2 nanotube array (NTA) electrodes affords 10 consecutive analyses with surface regenerations in between. An indium tin oxide (ITO) allows visible light to impinge onto the two electrodes. The detection limits for anti-S1 and anti-N antibodies were estimated to be 177 and 97 ng mL-1, respectively. Such values compare well with those achieved with other reported methods and satisfy the requirement for screening convalescent patients with low antibody levels. Additionally, our method exhibits excellent intra-batch (RSD = 1.3%), inter-batch (RSD = 3.4%), intra-day (RSD = 1.0%), and inter-day (RSD = 1.6%) reproducibility. The obviation of an enzyme label and continuous analysis markedly decreased the assay cost and duration, rendering this method cost-effective. The excellent anti-fouling property of PEG enables accuracy validation by comparing our PEC immunoassays of patient sera to those of ELISA. In addition, the simultaneous detection of two antibodies holds great potential in disease diagnosis and immunity studies.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Ouro , Reprodutibilidade dos Testes , Análise de Injeção de Fluxo , Proteínas do Nucleocapsídeo , Nucleocapsídeo/química , Anticorpos Antivirais , Imunoensaio/métodos
3.
J Virol ; 97(10): e0089223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772835

RESUMO

IMPORTANCE: The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.


Assuntos
Antivirais , Hepacivirus , Proteínas do Core Viral , Humanos , Antivirais/metabolismo , Antivirais/farmacologia , Hepacivirus/química , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Nucleocapsídeo/antagonistas & inibidores , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Replicação Viral , Imagem Individual de Molécula/métodos , Ligação Proteica
4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108688

RESUMO

White spot syndrome virus (WSSV) is a very large dsDNA virus. The accepted shape of the WSSV virion has been as ellipsoidal, with a tail-like extension. However, due to the scarcity of reliable references, the pathogenesis and morphogenesis of WSSV are not well understood. Here, we used transmission electron microscopy (TEM) and cryogenic electron microscopy (Cryo-EM) to address some knowledge gaps. We concluded that mature WSSV virions with a stout oval-like shape do not have tail-like extensions. Furthermore, there were two distinct ends in WSSV nucleocapsids: a portal cap and a closed base. A C14 symmetric structure of the WSSV nucleocapsid was also proposed, according to our Cryo-EM map. Immunoelectron microscopy (IEM) revealed that VP664 proteins, the main components of the 14 assembly units, form a ring-like architecture. Moreover, WSSV nucleocapsids were also observed to undergo unique helical dissociation. Based on these new results, we propose a novel morphogenetic pathway of WSSV.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Vírion/metabolismo , Microscopia Eletrônica , Microscopia Imunoeletrônica
5.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(2): 268-272, 2023 Feb 06.
Artigo em Chinês | MEDLINE | ID: mdl-36797587

RESUMO

Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Subgenômico , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Viral/genética , Sensibilidade e Especificidade , Nucleocapsídeo/química , Teste para COVID-19
6.
Protein Sci ; 32(4): e4603, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807437

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid protein is the most abundantly expressed viral protein during infection where it targets both RNA and host proteins. However, identifying how a single viral protein interacts with so many different targets remains a challenge, providing the impetus here for identifying the interaction sites through multiple methods. Through a combination of nuclear magnetic resonance (NMR), electron microscopy, and biochemical methods, we have characterized nucleocapsid interactions with RNA and with three host proteins, which include human cyclophilin-A, Pin1, and 14-3-3τ. Regarding RNA interactions, the nucleocapsid protein N-terminal folded domain preferentially interacts with smaller RNA fragments relative to the C-terminal region, suggesting an initial RNA engagement is largely dictated by this N-terminal region followed by weaker interactions to the C-terminal region. The nucleocapsid protein forms 10 nm ribonuclear complexes with larger RNA fragments that include 200 and 354 nucleic acids, revealing its potential diversity in sequestering different viral genomic regions during viral packaging. Regarding host protein interactions, while the nucleocapsid targets all three host proteins through its serine-arginine-rich region, unstructured termini of the nucleocapsid protein also engage host cyclophilin-A and host 14-3-3τ. Considering these host proteins play roles in innate immunity, the SARS-CoV-2 nucleocapsid protein may block the host response by competing interactions. Finally, phosphorylation of the nucleocapsid protein quenches an inherent dynamic exchange process within its serine-arginine-rich region. Our studies identify many of the diverse interactions that may be important for SARS-CoV-2 pathology during infection.


Assuntos
COVID-19 , RNA , Humanos , SARS-CoV-2/metabolismo , Ciclofilinas/análise , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Arginina , Serina , Peptidilprolil Isomerase de Interação com NIMA/análise
7.
Microscopy (Oxf) ; 72(3): 178-190, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36242583

RESUMO

Filoviruses are filamentous enveloped viruses belonging to the family Filoviridae, in the order Mononegavirales. Some filovirus members, such as Ebola virus and Marburg virus, cause severe hemorrhagic fever in humans and non-human primates. The filovirus ribonucleoprotein complex, called the nucleocapsid, forms a double-layered helical structure in which a non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (NP), viral protein 35 (VP35), VP24, VP30 and RNA-dependent RNA polymerase (L). The inner layer consists of the helical NP-RNA complex, acting as a scaffold for the binding of VP35 and VP24 that constitute the outer layer. Recent structural studies using cryo-electron microscopy have advanced our understanding of the molecular mechanism of filovirus nucleocapsid formation. Here, we review the key characteristics of the Ebola virus and Marburg virus nucleocapsid structures, highlighting the similarities and differences between the two viruses. In particular, we focus on the structure of the helical NP-RNA complex, the RNA binding mechanism and the NP-NP interactions in the helix. The structural analyses reveal a possible mechanism of nucleocapsid assembly and provide potential targets for the anti-filovirus drug design.


Assuntos
Ebolavirus , Marburgvirus , Animais , Microscopia Crioeletrônica , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Ebolavirus/química , Ebolavirus/metabolismo , Marburgvirus/química , Marburgvirus/metabolismo , Proteínas Virais/análise , Proteínas Virais/química , Proteínas Virais/metabolismo , RNA/análise , RNA/metabolismo
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-969877

RESUMO

Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.


Assuntos
Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Subgenômico , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Viral/genética , Sensibilidade e Especificidade , Nucleocapsídeo/química , Teste para COVID-19
9.
J Biol Chem ; 298(9): 102337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931116

RESUMO

Respiratory syncytial virus has a negative-sense single-stranded RNA genome constitutively encapsidated by the viral nucleoprotein N, forming a helical nucleocapsid which is the template for viral transcription and replication by the viral polymerase L. Recruitment of L onto the nucleocapsid depends on the viral phosphoprotein P, which is an essential L cofactor. A prerequisite for genome and antigenome encapsidation is the presence of the monomeric, RNA-free, neosynthesized N protein, named N0. Stabilization of N0 depends on the binding of the N-terminal residues of P to its surface, which prevents N oligomerization. However, the mechanism involved in the transition from N0-P to nucleocapsid assembly, and thus in the specificity of viral genome encapsidation, is still unknown. Furthermore, the specific role of N oligomerization and RNA in the morphogenesis of viral factories, where viral transcription and replication occur, have not been elucidated although the interaction between P and N complexed to RNA has been shown to be responsible for this process. Here, using a chimeric protein comprising N and the first 40 N-terminal residues of P, we succeeded in purifying a recombinant N0-like protein competent for RNA encapsidation in vitro. Our results showed the importance of RNA length for stable encapsidation and revealed that the nature of the 5' end of RNA does not explain the specificity of encapsidation. Finally, we showed that RNA encapsidation is crucial for the in vitro reconstitution of pseudo-viral factories. Together, our findings provide insight into respiratory syncytial virus viral genome encapsidation specificity.


Assuntos
Nucleocapsídeo , Nucleoproteínas , RNA Viral , Vírus Sincicial Respiratório Humano , Empacotamento do Genoma Viral , Proteínas Estruturais Virais , Humanos , Nucleocapsídeo/química , Nucleocapsídeo/fisiologia , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/química , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35105687

RESUMO

BACKGROUND AND OBJECTIVES: Information about humoral and cellular responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antibody persistence in convalescent (COVID-19) patients with multiple sclerosis (PwMS) is scarce. The objectives of this study were to investigate factors influencing humoral and cellular responses to SARS-CoV-2 and its persistence in convalescent COVID-19 PwMS. METHODS: This is a retrospective study of confirmed COVID-19 convalescent PwMS identified between February 2020 and May 2021 by SARS-CoV-2 antibody testing. We examined relationships between demographics, MS characteristics, disease-modifying therapy (DMT), and humoral (immunoglobulin G against spike and nucleocapsid proteins) and cellular (interferon-gamma [IFN-γ]) responses to SARS-CoV-2. RESULTS: A total of 121 (83.45%) of 145 PwMS were seropositive, and 25/42 (59.5%) presented a cellular response up to 13.1 months after COVID-19. Anti-CD20-treated patients had lower antibody titers than those under other DMTs (p < 0.001), but severe COVID-19 and a longer time from last infusion increased the likelihood of producing a humoral response. IFN-γ levels did not differ among DMT. Five of 7 (71.4%) anti--CD20-treated seronegative patients had a cellular response. The humoral response persisted for more than 6 months in 41/56(81.13%) PwMS. In multivariate analysis, seropositivity decreased due to anti-CD20 therapy (OR 0.08 [95% CI 0.01-0.55]) and increased in males (OR 3.59 [1.02-12.68]), whereas the cellular response decreased in those with progressive disease (OR 0.04 [0.001-0.88]). No factors were associated with antibody persistence. DISCUSSION: Humoral and cellular responses to SARS-CoV-2 are present in COVID-19 convalescent PwMS up to 13.10 months after COVID-19. The humoral response decreases under anti-CD20 treatment, although the cellular response can be detected in anti-CD20-treated patients, even in the absence of antibodies.


Assuntos
COVID-19/imunologia , Imunidade Celular , Imunidade Humoral , Esclerose Múltipla/imunologia , Adulto , Idoso , Anticorpos Antivirais/análise , Antígenos CD20/imunologia , COVID-19/complicações , Feminino , Humanos , Imunoglobulina G/análise , Interferon gama/biossíntese , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Nucleocapsídeo/química , Nucleocapsídeo/imunologia , Estudos Retrospectivos
11.
STAR Protoc ; 3(1): 101030, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34977676

RESUMO

This protocol describes the reconstitution of the filamentous Ebola virus nucleocapsid-like assembly in vitro. This is followed by solving the cryo-EM structure using helical reconstruction, and flexible fitting of the existing model into the 5.8 Å cryo-EM map. The protocol can be applied to other filamentous viral protein assemblies, particularly those with high flexibility and moderate resolution maps, which present technical challenges to model building. For complete details on the use and execution of this profile, please refer to Su et al. (2018).


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Microscopia Crioeletrônica/métodos , Ebolavirus/química , Humanos , Nucleocapsídeo/química , Montagem de Vírus
12.
FEBS J ; 289(13): 3813-3825, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34665939

RESUMO

The ongoing outbreak of COVID-19 caused by SARS-CoV-2 has resulted in a serious public health threat globally. Nucleocapsid protein is a major structural protein of SARS-CoV-2 that plays important roles in the viral RNA packing, replication, assembly, and infection. Here, we report two crystal structures of nucleocapsid protein C-terminal domain (CTD) at resolutions of 2.0 Å and 3.1 Å, respectively. These two structures, crystallized under different conditions, contain 2 and 12 CTDs in asymmetric unit, respectively. Interestingly, despite different crystal packing, both structures show a similar dimeric form as the smallest unit, consistent with its solution form measured by the size-exclusion chromatography, suggesting an important role of CTD in the dimerization of nucleocapsid proteins. By analyzing the surface charge distribution, we identified a stretch of positively charged residues between Lys257 and Arg262 that are involved in RNA-binding. Through screening a single-domain antibodies (sdAbs) library, we identified four sdAbs targeting different regions of nucleocapsid protein with high affinities that have future potential to be used in viral detection and therapeutic purposes.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Anticorpos de Domínio Único , Sequência de Aminoácidos , Proteínas do Nucleocapsídeo de Coronavírus/química , Nucleocapsídeo/química , Fosfoproteínas/química , SARS-CoV-2 , Anticorpos de Domínio Único/química
13.
Viruses ; 13(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960734

RESUMO

Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.


Assuntos
Nucleocapsídeo/química , Paramyxovirinae/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Infecções por Paramyxoviridae/virologia , Paramyxovirinae/química , Paramyxovirinae/classificação , Paramyxovirinae/genética , Filogenia , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo
14.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960748

RESUMO

All paramyxoviruses, which include the mumps virus, measles virus, Nipah virus, Newcastle disease virus, and Sendai virus, have non-segmented single-stranded negative-sense RNA genomes. These RNA genomes are enwrapped throughout the viral life cycle by nucleoproteins, forming helical nucleocapsids. In addition to these helical structures, recombinant paramyxovirus nucleocapsids may occur in other assembly forms such as rings, clam-shaped structures, and double-headed nucleocapsids; the latter two are composed of two single-stranded helices packed in a back-to-back pattern. In all of these assemblies, the neighboring nucleoprotein protomers adopt the same domain-swapping mode via the N-terminal arm, C-terminal arm, and recently disclosed N-hole. An intrinsically disordered region in the C-terminal domain of the nucleoproteins, called the N-tail, plays an unexpected role in regulating the transition among the different assembly forms that occurs with other viral proteins, especially phosphoprotein. These structures, together with the helical nucleocapsids, significantly enrich the structural diversity of the paramyxovirus nucleocapsids and help explain the functions of these diverse assemblies, including RNA genome protection, transcription, and replication, as well as encapsulation.


Assuntos
Proteínas do Nucleocapsídeo/química , Nucleocapsídeo/química , Paramyxovirinae/química , Modelos Moleculares , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Paramyxovirinae/classificação , Paramyxovirinae/genética , Conformação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Subunidades Proteicas/química
15.
Viral Immunol ; 34(10): 708-713, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534012

RESUMO

The coronavirus infectious disease 2019 (COVID-19), which is initiated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed critical challenges to global health. Understanding the kinetic of SARS-CoV-2-specific IgM and IgG responses in different subsets of COVID-19 patients is crucial to get insight into the humoral immune response elicited against the virus. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and receptor-binding domain (RBD) of spike protein in two groups of recovered and deceased COVID-19 patients. The levels of IgM and IgG specific to N and RBD proteins were detected by ELISA. N- and RBD-specific IgM was higher in deceased patients in comparison with recovered patients, while there was no significant difference in N- and RBD-specific IgG between the two groups. A significant correlation was observed between IgG and IgM titers against RBD and N, in both groups of patients. These results argue against impaired antibody response in deceased COVID-19 patients.


Assuntos
Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/mortalidade , SARS-CoV-2/imunologia , Feminino , Humanos , Imunoglobulina G/análise , Imunoglobulina G/imunologia , Imunoglobulina M/análise , Imunoglobulina M/imunologia , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Nucleocapsídeo/química , Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
16.
Commun Biol ; 4(1): 833, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215847

RESUMO

Mumps virus (MuV) is a highly contagious human pathogen and frequently causes worldwide outbreaks despite available vaccines. Similar to other mononegaviruses such as Ebola and rabies, MuV uses a single-stranded negative-sense RNA as its genome, which is enwrapped by viral nucleoproteins into the helical nucleocapsid. The nucleocapsid acts as a scaffold for genome condensation and as a template for RNA replication and transcription. Conformational changes in the MuV nucleocapsid are required to switch between different activities, but the underlying mechanism remains elusive due to the absence of high-resolution structures. Here, we report two MuV nucleoprotein-RNA rings with 13 and 14 protomers, one stacked-ring filament and two nucleocapsids with distinct helical pitches, in dense and hyperdense states, at near-atomic resolutions using cryo-electron microscopy. Structural analysis of these in vitro assemblies indicates that the C-terminal tail of MuV nucleoprotein likely regulates the assembly of helical nucleocapsids, and the C-terminal arm may be relevant for the transition between the dense and hyperdense states of helical nucleocapsids. Our results provide the molecular mechanism for structural plasticity among different MuV nucleocapsids and create a possible link between structural plasticity and genome condensation.


Assuntos
Microscopia Crioeletrônica/métodos , Vírus da Caxumba/metabolismo , Nucleocapsídeo/ultraestrutura , Nucleoproteínas/ultraestrutura , Proteínas Virais/ultraestrutura , Vírion/metabolismo , Humanos , Modelos Moleculares , Vírus da Caxumba/genética , Conformação de Ácido Nucleico , Nucleocapsídeo/química , Nucleoproteínas/química , Conformação Proteica , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/química , Vírion/genética
17.
PLoS Pathog ; 17(7): e1009740, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34270629

RESUMO

Nipah and its close relative Hendra are highly pathogenic zoonotic viruses, storing their ssRNA genome in a helical nucleocapsid assembly formed by the N protein, a major viral immunogen. Here, we report the first cryoEM structure for a Henipavirus RNA-bound nucleocapsid assembly, at 3.5 Å resolution. The helical assembly is stabilised by previously undefined N- and C-terminal segments, contributing to subunit-subunit interactions. RNA is wrapped around the nucleocapsid protein assembly with a periodicity of six nucleotides per protomer, in the "3-bases-in, 3-bases-out" conformation, with protein plasticity enabling non-sequence specific interactions. The structure reveals commonalities in RNA binding pockets and in the conformation of bound RNA, not only with members of the Paramyxoviridae family, but also with the evolutionarily distant Filoviridae Ebola virus. Significant structural differences with other Paramyxoviridae members are also observed, particularly in the position and length of the exposed α-helix, residues 123-139, which may serve as a valuable epitope for surveillance and diagnostics.


Assuntos
Vírus Nipah/ultraestrutura , Proteínas do Nucleocapsídeo/ultraestrutura , Nucleocapsídeo/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular , Vírus Nipah/química , Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/química , RNA Viral/química , RNA Viral/ultraestrutura
18.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081630

RESUMO

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Assuntos
Testes de Aglutinação/métodos , Formação de Anticorpos/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Epitopos de Linfócito B/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , COVID-19/sangue , COVID-19/mortalidade , Epitopos/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Humanos , Imunidade Humoral , Análise em Microsséries/métodos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Peptídeos/imunologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
19.
Science ; 372(6547): 1220-1224, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112695

RESUMO

Viruses are ubiquitous pathogens of global impact. Prompted by the hypothesis that their earliest progenitors recruited host proteins for virion formation, we have used stringent laboratory evolution to convert a bacterial enzyme that lacks affinity for nucleic acids into an artificial nucleocapsid that efficiently packages and protects multiple copies of its own encoding messenger RNA. Revealing remarkable convergence on the molecular hallmarks of natural viruses, the accompanying changes reorganized the protein building blocks into an interlaced 240-subunit icosahedral capsid that is impermeable to nucleases, and emergence of a robust RNA stem-loop packaging cassette ensured high encapsidation yields and specificity. In addition to evincing a plausible evolutionary pathway for primordial viruses, these findings highlight practical strategies for developing nonviral carriers for diverse vaccine and delivery applications.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Capsídeo/metabolismo , Evolução Molecular Direcionada , RNA Mensageiro/metabolismo , Substituição de Aminoácidos , Aquifex/enzimologia , Proteínas de Bactérias/química , Capsídeo/química , Microscopia Crioeletrônica , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas , RNA Mensageiro/química , RNA Mensageiro/genética , Ribonucleases/metabolismo
20.
J Struct Biol ; 213(2): 107742, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33971285

RESUMO

Cryo-electron tomography (cryo-ET) is a pivotal imaging technique for studying the structure of pleomorphic enveloped viruses and their interactions with the host at native conditions. Owing to the limited tilting range of samples with a slab geometry, electron tomograms suffer from so-called missing wedge information in Fourier space. In dual-axis cryo-ET, two tomograms reconstructed from orthogonally oriented tilt series are combined into a tomogram with improved resolution as the missing wedge information is reduced to a pyramid. Volta phase plate (VPP) allows to perform in-focus cryo-ET with high contrast transfer at low-resolution frequencies and thus its application may improve the quality of dual-axis tomograms. Here, we compare dual-axis cryo-ET with and without VPP on Ebola virus-like particles to visualize and segment viral and host cell proteins within the membrane-enveloped filamentous particles. Dual-axis VPP cryo-ET reduces the missing wedge information and ray artifacts arising from the weighted back-projection during tomogram reconstruction, thereby minimizing ambiguity in the analysis of crowded environments and facilitating 3D segmentation. We show that dual-axis VPP tomograms provide a comprehensive description of macromolecular organizations such as nucleocapsid assembly states, the distribution of glycoproteins on the viral envelope and asymmetric arrangements of the VP40 layer in non-filamentous regions of virus-like particles. Our data reveal actin filaments within virus-like particles in close proximity to the viral VP40 scaffold, suggesting a direct interaction between VP40 and actin filaments. Dual-axis VPP cryo-ET provides more complete 3D information at high contrast and allows for better interpretation of macromolecule interactions and pleomorphic organizations.


Assuntos
Actinas/química , Microscopia Crioeletrônica/métodos , Ebolavirus/química , Proteínas da Matriz Viral/química , Actinas/metabolismo , Membrana Celular , Ebolavirus/metabolismo , Ebolavirus/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Células HEK293 , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Imageamento Tridimensional , Nucleocapsídeo/química , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...